Continuous Mesh Model and Well-Posed Continuous Interpolation Error Estimation

نویسندگان

  • Adrien Loseille
  • Frédéric Alauzet
چکیده

In the context of mesh adaptation, Riemannian metric spaces have been used to prescribe orientation, density and stretching of anisotropic meshes. Such structures are used to compute lengths in adaptive mesh generators. In this report, a Riemannian metric space is shown to be more than a way to compute a distance. It is proven to be a reliable continuous mesh model. In particular, we demonstrate that the linear interpolation error can be derived continuously for a continuous mesh. In its tangent space, a Riemannian metric space reduces to a constant metric tensor so that it simply spans a metric space. Metric tensors are then used to continuously model discrete elements. On this basis, geometric invariants have been extracted. They connect a metric tensor to the set of all the discrete elements which can be represented by this metric. As the behavior of a Riemannian metric space is obtained by patching together the behavior of each of its tangent spaces, the global mesh model arises from gathering together continuous element models. We complete the continuous-discrete analogy by providing a continuous interpolation error estimate and a well-posed definition of the continuous linear interpolate. The later is based on an exact relation connecting the discrete error to the continuous one. From one hand, this new continuous framework freed the analysis of the topological mesh constraints. On the other hand, powerful mathematical tools are available and well defined on the space of continuous meshes: calculus of variations, differentiation, optimization, . . . , whereas these tools are not defined on the space of discrete meshes. Key-words: Unstructured mesh, continuous mesh, Riemannian metric space, interpolation error, linear interpolate. ∗ Email : [email protected] † Email : [email protected] in ria -0 03 70 23 5, v er si on 1 24 M ar 2 00 9 Modèle continu de maillage et erreur d’interpolation continue bien posée Résumé : Les espaces métriques riemanniens sont classiquement utilisés en adaptation de maillage dans le but de prescrire l’orientation, les étirements et la densité des maillages anisotropes. Ils définissent alors le calcul des distances dans les mailleurs adaptatifs. Dans ce rapport, on montre, au-delà de la simple définition du calcul des distances, qu’un espace métrique riemannien est un modèle continu de maillage. On montre que ce modèle est bien posé sur le plan théorique. En particulier, on démontre qu’il est possible de dériver de façon continue l’erreur d’interpolation linéaire. Localement, ces espaces se comportent dans leurs plans tangents comme des espaces métriques euclidiens. On utilise ces derniers pour modéliser les éléments discrets. À partir de cette modélisation, on montre qu’il existe un ensemble d’invariants géométriques qui lient la métrique aux éléments discrets qu’elle représente. Tout comme le comportement global d’un espace riemannien est obtenu en recollant les comportements locaux de ses espaces tangents, un maillage va être modélisé par le recollement des modèles d’éléments continus. Enfin, on complète l’analogie entre la vision continue et la vision discrète en proposant une estimation de l’erreur d’interpolation continue et une définition bien posée de l’opérateur d’interpolation linéaire continu. La définition de cet interpolé repose sur une propriété d’exactitude locale aboutissant à une relation d’équivalence entre l’erreur d’interpolation discrète et l’erreur d’interpolation continue. D’une part, ce nouveau cadre théorique permet de se libérer des contraintes liées à la topologie des maillages discrets. D’autre part, on dispose naturellement sur l’espace des maillages continus d’outils d’analyse puissants et bien posés qui ne sont pas définis sur l’espace des maillages discrets: calcul des variations, différentiation, optimisation, . . . Mots-clés : Maillage non structuré, maillage continu, espaces métriques riemanniens, erreur d’interpolation, interpolé linéaire. in ria -0 03 70 23 5, v er si on 1 24 M ar 2 00 9 Continuous mesh model 3

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous Mesh Framework Part I: Well-Posed Continuous Interpolation Error

In the context of mesh adaptation, Riemannian metric spaces have been used to prescribe orientation, density and stretching of anisotropic meshes. But, such structures are only considered to compute lengths in adaptive mesh generators. In this article, a Riemannian metric space is shown to be more than a way to compute a length. It is proven to be a reliable continuous mesh model. In particular...

متن کامل

Anisotropic hp-mesh optimization technique based on the continuous mesh and error models

We develop a new mesh adaptive technique for the numerical solution of partial differential equations (PDEs) using the hp-version of the finite element method (hp-FEM). The technique uses a combination of approximation and interpolation error estimates to generate anisotropic triangular elements as well as appropriate polynomial approximation degrees. We present a hp-version of the continuous m...

متن کامل

A 3D Goal-Oriented Anisotropic Mesh Adaptation Applied to Inviscid Flows in Aeronautics

This paper studies the coupling between anisotropic mesh adaptation and goal-oriented error estimate. The former is very well suited to the control of the interpolation error. It is generally interpreted as a local geometric error estimate. On the contrary, the latter is preferred when studying approximation errors for PDEs. It generally involves non local error contributions. Consequently, a f...

متن کامل

Multi-Dimensional Continuous Metric for Mesh Adaptation

Mesh adaptation is considered here as the research of an optimum that minimizes the P1 interpolation error of a function u of R given a number of vertices. A continuous modeling is described by considering classes of equivalence between meshes which are analytically represented by a metric tensor field. Continuous metrics are exhibited for L error model and mesh order of convergence are analyze...

متن کامل

Providing a Model for Cost Estimation of Hospital Information System Software Design Using Continuous Decision Tree Algorithm

Introduction: The cost estimation of a hospital information system software refers to estimating the cost and time required to develop the hospital information system software prior to the start of the project, which will continue until the end of production and development of the system. Estimating the cost of software to produce hospital information system is one of the major concerns of proj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009